Electric eel-inspired devices could power artificial human organs
Quote from Owlscrying on 20 June 2023, 00:06A flexible and transparent power source inspired by the electric eel could be used to power electrical devices in the body, such as cardiac pacemakers, implantable sensors or even prosthetic organs. The prototype, described in Nature1 on 13 December, runs on a solution of salt and water, but researchers hope that future versions might get their energy from bodily fluids.
“Our artificial electric organ has a lot of characteristics that traditional batteries don't have,” says Thomas Schroeder, a chemical engineer at the University of Michigan in Ann Arbor, who co-led the research. As well as its desirable physical features, “it isn’t as potentially toxic, and it runs on potentially renewable streams of electrolyte solution”.
To design a biocompatible power source, Schroeder and his colleagues took inspiration from the knifefish, or electric eel (Electrophorus electricus), which defends itself and stuns prey with electrical discharges of up to 600 volts. The eel generates these powerful shocks using specialized cells called electrocytes, in organs that run along most of the length of its body. Variations in the concentration of electrolytes inside these cells generate a flow of ions that carries electric charge. Although each individual cell produces only a small voltage, eels have thousands of them stacked in series, so that all the voltages are added together.
Source
A flexible and transparent power source inspired by the electric eel could be used to power electrical devices in the body, such as cardiac pacemakers, implantable sensors or even prosthetic organs. The prototype, described in Nature1 on 13 December, runs on a solution of salt and water, but researchers hope that future versions might get their energy from bodily fluids.
“Our artificial electric organ has a lot of characteristics that traditional batteries don't have,” says Thomas Schroeder, a chemical engineer at the University of Michigan in Ann Arbor, who co-led the research. As well as its desirable physical features, “it isn’t as potentially toxic, and it runs on potentially renewable streams of electrolyte solution”.
To design a biocompatible power source, Schroeder and his colleagues took inspiration from the knifefish, or electric eel (Electrophorus electricus), which defends itself and stuns prey with electrical discharges of up to 600 volts. The eel generates these powerful shocks using specialized cells called electrocytes, in organs that run along most of the length of its body. Variations in the concentration of electrolytes inside these cells generate a flow of ions that carries electric charge. Although each individual cell produces only a small voltage, eels have thousands of them stacked in series, so that all the voltages are added together.
Source
Quote from Owlscrying on 20 June 2023, 00:06Researchers are working on a way to create a battery inspired by the electric eel. This bio-compatible battery can be flexible, transparent and completely not toxic and could be used to power a new generation of wearable and implantable tech.
Researchers are working on a way to create a battery inspired by the electric eel. This bio-compatible battery can be flexible, transparent and completely not toxic and could be used to power a new generation of wearable and implantable tech.